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Abstract 
 

Ganoderma spp. attract great interest due to their medicinal and pharmacological properties. These mushrooms have been 

artificially cultivated on a variety of lignocellulosic residues. The objective was to evaluate the effect of different Amazonian 

residues on the production and composition of a Ganoderma spp. (isolated in the Amazon) and Ganoderma lingzhi 

(commercial strain). The fungi were cultivated on residues of açaí seeds (Euterpe precatoria) and guaruba-cedro (Vochysia 

maxima) and three lots (I, II and III) of marupá sawdust (Simarouba amara). Biological efficiency, yield (%), and loss of 

organic matter were evaluated. The centesimal composition, and macro and micronutrients of the basidiomata were also 

analyzed. The fungi exhibited greater biological efficiency (7.85%) when cultivated on marupá I sawdust. However, the 

highest yield was observed in guaruba-cedro sawdust substrate (3.81%). Ganoderma spp. showed higher levels of carbon, 

nitrogen, proteins and total fiber, while G. lingzhi presented higher values of moisture, ash, total carbohydrates and energy 

value. Regarding the cultivation substrates, the açaí residue provided a greater synthesis of proteins for both fungi. The 

elemental composition of the basidiomata showed high levels of oxygen, carbon, potassium and phosphorus, and lower 

concentrations of calcium, magnesium, silicon, sulfur and aluminum. Although the productive parameters are not favorable for 

Ganoderma spp. isolated in the Amazon, this mushroom showed high protein levels, suggesting promising potential for 

commercial and medicinal/nutritional purposes, especially when cultivated on açaí residues. © 2024 Friends Science 

Publishers 
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Introduction 
 

The species of the Ganoderma genus are basidiomycete 

fungi widely recognized in traditional Asian cultures as 

sources of biomolecules with medicinal properties, 

attracting worldwide attention (Kurd-Anjaraki et al. 2022; 

Sułkowska-Ziaja et al. 2022). The bioactivities of 

Ganoderma spp. are associated with the presence of 

polysaccharides, triterpenes, flavonoids, alkaloids, steroids, 

unsaturated fatty acids, proteins, amino acids, enzymes, 

vitamins and minerals (Ekiz et al. 2023). Studies report that 

species of this genus, when cultivated under controlled 

conditions, present a more significant medicinal profile 

compared to basidiomata collected in nature (Sheikha 

2022). 

Mushrooms can be cultivated on different substrates 

(Bajwa et al. 1999a, b). Species of Ganoderma have been 

cultivated on a large scale using agricultural residues such 

as rice, wheat, barley, oats, beans, corn and soybean as 

substrates. In this fermentative process, the mushroom is 

formed from the degradation of the structural components of 

these residues by specific lignocellulolytic enzymes, 

excreted by them during their mycelial growth (Elisashvili 

2012; Sales-Campos and Chevreuil 2019). The use of 

locally available residues in the cultivation of mushrooms 

not only reduces production costs but also contributes to the 

recycling of substrates discarded in the region, resulting in a 

sustainable practice of reducing the environmental impact. 

In the Amazonas, Brazil, there are several residues with the 

potential to be used as mushroom cultivation substrates, 

such as açaí (Euterpe spp.), guaruba-cedro (Vochysia 

maxima), and marupá (Simarouba amara) (Aguiar et al. 

2022). 

Açaí is a native palm tree of the Amazon rainforest, 

highly valued for its benefits to human health. However, 

during the processing of the fruit to obtain the pulp (juice), 
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approximately 90% of the fruit is discarded, generating a 

large volume of waste (Boeira et al. 2020; Barros et al. 

2021). Guaruba-cedro is considered a wood species of 

neotropical distribution and is widely used in the local 

timber industry, mainly in construction (Reis et al. 2015; 

Ribeiro et al. 2019). Marupá is a tree species found in 

tropical forests and widely used in the manufacturing of 

crates, wood coatings, matchsticks, frames, plywood and 

musical instruments (Santos et al. 2021). In this scenario, 

the objective of this study was to cultivate two strains of 

Ganoderma, one isolated in the Amazon and another 

commercial strain, using different Amazonian residues and 

to evaluate their effects on the productive parameters and 

centesimal composition of the mushrooms, with the 

intention of generating a better use of the Amazonian 

species, mainly for commercial purposes. 

 

Materials and Methods 
 

The strains of Ganoderma (G. lingzhi CC22 and 

Ganoderma spp. 1962) were obtained from the Collection 

of Cultures of Microorganisms of Agrosilvicultural Interest 

at the Instituto Nacional de Pesquisas da Amazônia (INPA). 

The residues of açaí seeds (Euterpe precatoria) and sawdust 

from guaruba-cedro (Vochysia maxima) and three lots (I, II 

and III) of marupá sawdust (Simarouba amara) from 

different sources were collected at markets and timber 

industries in the city of Manaus, Amazonas, Brazil. 

Ganoderma species were reactivated in Petri dishes 

containing Potato Dextrose Agar (BDA) and kept under 

refrigeration (4ºC) until use. The spawn was composed of 

residues (78%), 20% of a bran mixture (rice, wheat and 

corn) in a ratio of 60:20:20 (w/w/w) and 2% of CaCO3. The 

flasks containing the spawn were autoclaved at 121°C for 1 

h and inoculated with 1/8 of the Petri dish containing the 

fungal mycelium (Aguiar et al. 2022). The mushroom 

cultivation substrate had the same composition as the 

spawn, with 5% of the spawn being used as fungal 

inoculum. The cultivation bags were incubated at 25°C, 

90% humidity, with a 12-h photoperiod. 

The productive parameters, expressed as biological 

efficiency (%), yield (%) and loss of organic matter (%), 

were calculated according to Sales-Campos and Andrade 

(2011). The moisture content, ash, lipids, carbon, total 

nitrogen, proteins, fibers, total carbohydrates and energy 

value was determined following the methodologies 

described by Aguiar et al. (2021). The macro (N, K, Ca, 

Mg, P and S) and micronutrients (Cl, Fe, B, Mn, Zn, Cu and 

Mo) was determined by energy-dispersive X-ray 

spectroscopy (EDX). The detector was coupled to a 

scanning electron microscope (SEM), emitting X-rays 

characteristic of each chemical element present in the 

sample, allowing for the chemical characterization of the 

analyzed material (Colpan et al. 2018). 

The cultivation experiments of the Ganoderma species 

were arranged in a completely randomized design, in a 

factorial scheme composed of 2 fungal species (G. lingzhi 

and Ganoderma spp.) and 5 Amazonian residues (açaí, 

guaruba-cedro, marupá I, marupá II and marupá III), each 

with 20 replicates. The physicochemical analyses were 

performed in triplicate.  

 

Statistical analysis 

 

The data were subjected to analysis of variance (ANOVA) 

using the Statistica 7.0 software and the means were 

compared using the Tukey test at a 5% probability level. 

 

Results 

 

The biological efficiency (BE) ranged from 2.72 to 7.85%, 

with the lowest values observed in açaí residue. The highest 

biological efficiency values were observed for G. lingzhi on 

marupá I (7.85%) and II (7.33%) substrates. G. lingzhi also 

exhibited higher yield percentages values. Both fungi 

showed higher yields in guaruba-cedro sawdust substrate, 

with G. lingzhi values about 2.5 times higher than 

Ganoderma spp. No statistical difference was observed for 

loss of organic matter in the cultivation of G. lingzhi, except 

for açaí, which showed the lowest loss of organic matter 

values. Ganoderma spp. cultivated in marupá I exhibited a 

higher loss of organic matter, being approximately 14% 

higher than G. lingzhi cultivated in the same residue (Table 

1). 

In the centesimal composition, the moisture content 

determined in G. lingzhi basidiomata ranged from 7.09 to 

10.09%, with the lowest and highest values observed in 

cultivation on marupá II and guaruba-cedro, respectively. 

Ganoderma spp. exhibited a moisture content range of 3.82 

to 6.80%, with the lowest value found for the açaí-based 

substrate and the highest for marupá II. No statistical 

differences were found in ash content between the fungal 

species and residues, with values ranging from 0.06 to 

0.43%. Ganoderma spp. showed no difference in lipid 

content between the different substrates, with the lowest 

lipid content observed in the açaí-based substrate for both 

fungi (Table 2). 

G. lingzhi and Ganoderma spp. exhibited average 

carbon values around 50%. However, nitrogen contents 

differed between the fungal species, with G. lingzhi 

presenting values ranging from 3.65 to 5.70%, while 

Ganoderma spp. varied from 7.72 to 9.21%. Both fungi 

showed statistical differences in protein content between the 

residues used in mushroom cultivation, with the highest 

percentages observed in marupá II and açaí for G. lingzhi 

(24.96%) and Ganoderma spp. (43.32%), respectively. The 

protein content was higher in Ganoderma spp. for all 

evaluated substrates, being about 2.5 times higher than G. 

lingzhi. Fiber levels were elevated in both fungi, with the 

highest percentages in marupá II and marupá III for G. 

lingzhi (52.45%) and Ganoderma spp. (48.96%), 

respectively. G. lingzhi also showed higher values of total 
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carbohydrates (74.30%) and energy (401.46 Kcal 100 g-1) 

when grown in marupá II compared to the other cultivation 

substrates. While Ganoderma spp. exhibited higher 

carbohydrate content (56.32%) in guaruba-cedro and higher 

energy (252.37 Kcal 100 g-1) in marupá III. Comparing the 

two fungal species, G. lingzhi showed a higher carbohydrate 

content and energy value than Ganoderma spp. (Table 2). 

In mushrooms, the element present in the highest 

concentration was oxygen (O), which emphasis for G. 

lingzhi cultivated in açaí. Potassium (K) exhibited 

concentrations ranging from 1.38 to 12.94%, with a notable 

value for G. lingzhi cultivated in marupá III residue (Table 

3). Phosphorus (P) ranged from 0.38 to 5.71%, highlighting 

the basiodiomata of Ganoderma spp. cultivated in marupá 

III sawdust. Calcium (Ca) was observed only in basidiomata 

of G. lingzhi from cultivations in guaruba-cedro and marupá 

Table 1: Productive parameters of G. lingzhi and Ganoderma spp. cultivated on substrates formulated with different lignocellulosic 

residues. BE: biological efficiency. Y: yield. LOM: loss of organic matter 
 

Strain Substrate BE (%) Y (%) LOM (%) 

G. lingzhi Açaí 2.72 ± 1.8Bb 1.41 ± 0.9Cc 31.00 ± 3.5Be 

Guaruba-cedro 4.14 ± 1.1Bb 3.81 ± 1.4Aa 58.45 ± 5.8Ab 

Marupá 1 7.85 ± 4.1Aa 2.41 ± 1.2Bb 58.89 ± 7.8Ab 
Marupá 2 7.33 ± 3.9Aa 2.26 ± 1.2BCb 60.52 ± 5.0Ab 

Marupá 3 4.06 ± 1.9Bb 1.38 ± 0.6Cd 58.98 ± 4.8Ab 

Ganoderma spp. Açaí 2.76 ± 0.7Cc 1.43 ± 0.3Ac 38.03 ± 5.5Cd 
Guaruba-cedro 4.54 ± 1.7Ab 1.51 ± 0.5Ac 55.79 ± 5.8ABc 

Marupá 1 4.80 ± 1.2Ab 1.47 ± 0.3Ac 70.56 ± 3.4Aa 

Marupá 2 4.64 ± 1.2Ab 1.43 ± 0.3Ac 64.53 ± 6.6Ab 
Marupá 3 4.55 ± 0.9Ab 1.46 ± 0.3Ac 45.48 ± 10.0Bc 

The data are expressed as mean ± standard deviation (n = 20). Capital letters compare the same species cultivated on different substrates. Lowercase letters compare all samples 

from the two species. Treatments with the same letter do not differ at the 5% (P ≤ 0.05) level of probability, according to the Tukey test 

 

Table 2: Centesimal composition of the basidiomata of Ganoderma lingzhi and Ganoderma spp. cultivated on different lignocellulosic 

substrates 
 

Strain Substrate Moisture (%) Ash (%) Lipids (%) Carbon (%) Nitrogen 

(%) 

Proteins (%) Total fiber (%) Carbohydrates 

(%) 

Energy (kcal 

100 g-1) 

G. linghzi Açaí 9.46 ± 0.0ABa 0.11 ± 0.0Aa 3.66 ± 0.1Cd 47.33 ± 0.6Ab 3.65 ± 0.0Ei 16.00 ± 0.0Ae 41.17 ± 0.2Cf 70.80 ± 0.2Bb 380.00 ± 1.7Cc 
 Guaruba-

cedro 

10.09 ± 0.0Aa 0.06 ± 0.0Aa 5.12 ± 0.1Ba 45.52 ± 0.7Bc 5.25 ± 0.0Bf 22.95 ± 0.2Cg 44.07 ± 1.5Bd 72.01 ± 0.6Bb 385.00 ± 1.6Cb 

 Marupá I 9.33 ± 0.0Ca 0.43 ± 0.5Aª 5.91 ± 0.1Aª 44.93 ± 0.6Bcd 4.40 ± 0.2Dh 19.97 ± 0.2Cg 44.58 ± 0.8Bc 71.36 ± 1.1Bb 390.50 ± 3.4Bb 
 Marupá II 7.09 ± 0.0Ec 0.08 ± 0.5Aª 6.03 ± 0.1Aª 45.12 ± 0.3Bc 5.70 ± 0.0Ae 24.96 ± 0.2Cd 52.45 ± 0.4Aa 74.30 ± 0.3Aa 401.46 ± 0.3Ab 

 Marupá 

III 

8.38 ± 0.0Db 0.14 ± 0.0Aa 5.15 ± 0.2Bb 44.06 ± 0.6Bd 4.96 ± 0.0Cg 21.72 ± 0.9Bf 42.20 ± 1.1Bf 72.20 ± 1.1Ba 398.53 ± 0.9Aa 

Ganoderma 

spp. 

Açaí 3.82 ± 0.0De 0.09 ± 0.0Aa 4.44 ± 0.3Ac 50.45 ± 0.3Aª 9.21 ± 0.0Aa 40.32 ± 0.9Aa 44.76 ± 1.1Cf 51.30 ± 1.1Ba 241.17 ± 0.9Be 

Guaruba-

cedro 

5.14 ± 0.0Cd 0.06 ± 0.0Aa 4.63 ± 1.1Ab 49.60 ± 0.0ABa 7.72 ± 0.0Ed 33.82 ± 0.0Ea 44.77 ± 1.4Cc 56.32 ± 0.4Ae 241.36 ± 1.5Be 

Marupá I 5.80 ± 0.0Cd 0.09 ± 0.0Aa 5.88 ± 0.4Aª 49.19 ± 0.3Bª 8.34 ± 0.0Bb 36.51 ± 0.0Bd 46.33 ± 0.6 BCa 51.70 ± 1.2Bc 225.80 ± 5.0Cf 

Marupá II 6.80 ± 0.0Ac 0.10 ± 0.0Aa 5.29 ± 0.4Aª 40.09 ± 0.5De 7.90 ± 0.0Dc 34.61 ± 0.1Db 47.43 ± 0.7BCb 53.19 ± 0.9Bf 249.73 ± 1.5Ad 

Marupá 
III 

6.72 ± 0.0Bc 0.08 ± 0.0Aa 5.27 ± 0.3Aª 46.29 ± 0.3Cc 7.97 ± 0.0Cc 34.93 ± 0.1Cc 48.96 ± 0.8Bb 52.99 ± 0.4Bd 252.37 ± 1.7Ad 

Data expressed as mean ± standard deviation (n = 3). Capital letters compare the same species in different growing substrates. Lowercase letters compare all samples from the two 

species. Treatments with the same letter do not differ at the 5% (P ≤ 0.05) level of probability, according to the Tukey test 

 

Table 3: Elemental composition of Ganoderma lingzhi and Ganoderma spp. basidiomata cultivated in different lignocellulosic substrates, 

determined by energy-dispersive X-ray spectroscopy (EDS) 
 

Strain Substrate Atomic concentration (%) 

O K P Ca Mg Si S Al 

G. lingzhi Açaí 89.95 ± 3.4Aa 2.63 ± 1.3Bab 1.44 ± 1.08Ab - 0.42 ± 0.3ABb - 0.53 ± 0.4Aª 0.23 ± 0.1Abc 

 Guaruba-
cedro 

67.84 ± 6.6Be 1.38 ± 0.6Bb 0.38 ± 0.13Ab 0.37 ± 0.1Bb  0.22 ± 0.0Aa 0.36 ± 0.1Aª 0.36 ± 0.3Aa 

 Marupá I 88.49 ± 2.0Aab 3.59 ± 1.47Bab 1.55 ± 0.49Ab 1.45 ± 0.6Bb 0.73 ± 0.1Ab 0.30 ± 0.8Aª - - 

 Marupá II 89.43 ± 3.5Aab 4.73 ± 4.02Bab 0.95 ± 0.77Ab - 0.50 ± 0.2ABb 0.31 ± 0.2Aª 0.50 ±0.4Aª 0.50 ± 0.4Aª 
 Marupá III 75.98 ± 7.6Bcd 12.94 ±4.3Aa 1.08 ± 0.2Ab 7.82 ± 2.69Aa 0.89 ± 0.0Ab 0.09 ± 0.0Aa 0.55 ± 0.3Aª 0.55 ± 0.35Aª 

Ganoderma 

spp. 

Açaí 68.76 ± 0.2Cde 9.15 ± 10.05Aab 1.86 ± 1.0Bb - 0.54 ± 0.2Cb 0.38 ± 0.3Aª 0.77 ± 0.4Aª - 

Guaruba-
cedro 

64.57 ± 0.8Ce 4.77 ± 0.0Aab 1.84 ± 0.6Bb - 0.04± 0.0Cb - 0.47 ± 0.1Aª - 

Marupá I 76.07 ± 0.9Bcd 3.65 ± 2.3Aab 1.78 ± 1.6Bb - - - 0.76 ± 0.6Aª - 

Marupá II 79.72 ± 1.84ABbc 4.53 ± 2.6Aab 2.73 ± 0.8ABb - 1.06 ± 0.2ABab - 0.72 ± 0.5Aª - 

Marupá III 85.24 ± 4.06Aabc 3.78 0 ± 1.43Ab 5.71 ± 1.5Aa - 2.61 ± 1.71Aa 0.45 ± 0.2Aa 1.13 ± 0.8Aa - 
Data expressed as mean ± standard deviation (n = 3). Capital letters compare the same species in different growing substrates. Lowercase letters compare all samples from the two 

species. Treatments with the same letter do not differ at the 5% (P ≤ 0.05) level of probability, according to the Tukey test. (-) Not detectable by the method 
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I and III. Magnesium (Mg), silicon (Si), sulfur (S) and 

aluminum (Al) exhibited concentrations below 1% for both 

species in most residues (Table 3). 

 

Discussion 

 

The evaluation of biological efficiency is important as it 

expresses the ability of fungi to convert the cultivation 

substrate into basidiomata. G. lucidum grown on oat straw, 

bean straw, brachiaria grass, tifton grass and Eucalyptus 

sawdust, under different supplementation conditions with 

wheat bran, showed biological efficiency ranging from 0.0 

to 6.7%, with the highest results for bean straw and tifton 

grass supplemented with 20% wheat bran (Carvalho et al. 

2015). G. lucidum cultivated on agroforestry residues 

exhibited biological efficiency ranging from 21.0 to 31.5%, 

with emphasis on poplar sawdust (Atila 2022). 

G. carnosum cultivated on oak sawdust, peanut shells 

and corn cobs supplemented with oat bran exhibited 

biological efficiency from 3.98 to 15.05% (Baktemur et al. 

2022). Basidiomata of G. lucidum grown on mango sawdust 

(Mangifera indica) supplemented with 20% wheat bran 

showed a biological efficiency of 42.86% (Mehta et al. 

2014). The biological efficiency of the present study was 

lower than most of the works cited, suggesting that 

differences between the residues used, including the 

composition and structure of fibers (hemicellulose, cellulose 

and lignin), may influence mycelial development and 

penetration, affecting the formation of basidiomata 

(Jeznabadi et al. 2016, 2017). 

Ganoderma strains did not achieve a profitable yield 

percentage, because for a good index the values must be 

greater than 10%, considering the weight of fresh 

mushrooms in relation to the weight of the moist substrate 

(Siqueira et al. 2011). The low yield percentage can be 

attributed to substrate compaction, as it hinders oxygen 

exchange, leading to the accumulation of carbon dioxide 

and, consequently, affecting the development of 

basidiomata (Estrada and Pecchia 2017). Furthermore, the 

yield percentage can also be influenced by environmental 

conditions, mushroom species, and even variation among 

strains between strains of the same species (Rashad et al. 

2019). 

The loss of organic matter is a promising alternative to 

reduce lignocellulosic biomass in the environment, as well 

as the waste of these materials in the agroindustry (Alquati 

et al. 2016). However, in this study, no direct correlation 

was observed between loss of organic matter and biological 

efficiency for the two strains. G. lucidum grown on 

Eucalyptus sawdust and sugarcane straw showed a direct 

correlation between loss of organic matter (52.79%) and 

biological efficiency (47.37%) (Saad et al. 2017). However, 

the two variables are not always correlated, as loss of 

organic matter corresponds to substrate decomposition, 

while biological efficiency refers to the conversion of the 

substrate into mushroom mass, without considering the 

organic matter lost by the release of CO2 and H2O during 

fungal respiration (Zadrazil and Kurtzman 1982; Rashad et 

al. 2019). 

The production of mushrooms using lignocellulosic 

residues as a growth substrate is responsible for adding 

value to these underutilized materials and reducing the 

environmental impact caused by improper disposal and 

providing supplemental income to rural producers (Almeida 

et al. 2018). However, several factors affect mushroom 

production and their nutritional composition, e.g., genetics, 

origin, substrate composition, growth conditions, 

acclimatization and basidiomata maturation stage (Mahari et 

al. 2020). Mushrooms are capable of accumulate mineral 

elements more efficiently than most plant. Therefore, the 

content of mineral elements becomes one of the main 

indicators of mushroom quality (Li et al. 2016). Ash content 

in basidiomata normally ranges from 5 to 12% of dry matter 

(Kalač 2009). Thus, the low ash content found in the present 

study can be attributed to the chemical nature of the 

substrates used in the cultivation, as well as to the harvesting 

stage of the basidioma (Ogbe and Obeka 2013). 

The lipid content in Ganoderma spp. can be 

influenced by environmental factors such as nutritional 

components, oxygen, and temperature (Pedneault et al. 

2007). Ganoderma spp. exhibited stable lipid composition, 

being less sensitive to variations in solid-state cultivation, 

allowing to maintaining consistent lipid levels. This can be 

advantageous for its cultivation and use in various 

applications, including for medicinal and nutritional 

purposes. The high carbon content found in G. linghzi and 

Ganoderma corroborate the fact that carbon is an essential 

component in several biomolecules (Miles and Chang 

2004). As for nitrogen, Kurd-Anjaraki et al. (2022) found 

higher levels in the basidiomata of G. lucidum (5.88 mg 100 

g-1) when cultivated on poplar wood chips, suggesting that 

the nutritional composition of the basidiomata is affected by 

the growth conditions and type of substrate. 

Proteins are the main biomolecules that contribute to 

the nutritional value of mushrooms. In Ganoderma species, 

the protein ranges from 9.93 to 16.8%, corroborating the 

data found for the G. lingzhi (Ogbe and Obeka 2013; 

Stojković et al. 2014). The high protein content in 

Ganoderma spp., above 30%, may be associated with a 

genetic predisposition for higher protein production 

(Jonathan et al. 2022). Edible mushrooms Pleurotus 

ostreatus when cultivated in substrates based on açaí seed 

and elephant grass straw showed 27.19 and 17.70% of 

protein, respectively (Sales-Campos et al. 2021). In 

comparison, a commercial Agaricus bisporus presented 

39.84% of crude protein (Krishnamoorthi et al. 2022). 

The fibers of the basidiomata are part of the non-

digestible carbohydrates by digestive enzymes in organisms 

and, consequently, they help to reduce the levels of lipids, 

cholesterol and glucose in the bloodstream (Dubey et al. 

2019; Jovanović et al. 2021). Polysaccharides correspond 

the main carbohydrates found in Ganoderma species, 
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including β-glucan, mannose, xylose and other sugars 

present in smaller quantities, which are associated with 

several health benefits (Kalač 2009; Swallah et al. 2023). 

Additionally, it is important to highlight that the energy 

value is related to the content of fat, protein, and available 

carbohydrates (Shams et al. 2022). 

The significant presence of oxygen is commonly 

associated with various crucial biological functions (Alzand 

et al. 2019; Wang et al. 2022). On the other hand, potassium 

is an essential mineral for humans to maintain normal 

functions of all cells, including nerve and muscle cells 

(Falandysz et al. 2020). Magnesium plays an important role 

in the human body, as it can activate vitamin D and 

contributing to protein synthesis (Dronkelaar et al. 2018). In 

relation to calcium, this is a mineral that acts as a co-factor 

for several enzymes, besides assisting in the maintenance 

and movement of chromosomes (Burstrom 1968; White and 

Broadley 2003). Sulfur is a component of amino acids such 

as taurine, methionine and cysteine, which are essential for 

collagen synthesis (Rolim et al. 2020). Silicon is related to 

increased collagen synthesis and reduced skin aging 

(Ferreira et al. 2018). The presence of aluminum in 

mushrooms may be related to the metallic nature of the stub 

(sample holder) used during the analysis, causing a residual 

reading of electrons from this element. 

Ganoderma species play an important role as 

bioconverters and bioaccumulators of inorganic elements, 

converting them into organic compounds. Thus, these 

minerals can be used to improve the nutritional/chemical 

profile of mushrooms through biofortification approaches 

(Priyadarshni et al. 2022). In addition, the presence of 

macro and micronutrients in basidiomata plays a crucial role 

in promoting health and well-being, as they are essential for 

proper immune system function, metabolism and various 

physiological processes in the body (Rackerby et al. 2020; 

Kour et al. 2022). Although Ganoderma spp. are not 

considered edible, the results regarding the centesimal and 

mineral composition are promising, as the basidiomata 

showed high levels of proteins, fibers, carbohydrates and 

energy value, low lipid content and significant amounts of 

minerals. Thus, it is suggested that Ganoderma spp. have 

the potential to be used as a dietary supplement for health 

promotion and can be consumed in the form of capsules, 

tablets or teas (Ekiz et al. 2023). 

 

Conclusion 

 

The study describes, for the first time, the use of Amazonian 

lignocellulosic residues in the cultivation of Ganoderma 

spp., a fungus isolated in the Amazon. G. lingzhi and 

Ganoderma spp. showed low productive yields in 

Amazonian lignocellulosic residues. However, they 

exhibited a high protein content, with Ganoderma spp. 

standing out. These findings suggest a promising potential 

for both commercial and nutritional/medicinal purposes, 

especially when cultivated on açaí-based substrates. 

Additionally, it demonstrates the potential utilization of 

lignocellulosic residues from the Amazon region, providing 

a purpose for what would be discarded in the environment 

while generating products with added value. 
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